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Abstract—Duplicate detection is the 

process of identifying multiple 

representations of same real world entities. 

Today, duplicate detection methods need to 

process ever larger datasets in ever shorter 

time: maintaining the quality of a dataset 

becomes increasingly difficult. We present 

two novel, progressive duplicate detection 

algorithms that significantly increase the 

efficiency of finding duplicates if the 

execution time is limited: They maximize 

the gain of the overall process within the 

time available by reporting most results 

much earlier than traditional approaches. 

Comprehensive experiments show that our 

progressive algorithms can double the 

efficiency over time of traditional duplicate 

detection and significantly improve upon 

related work. 

1 INTRODUCTION  

Data are among the most important assets of 

a company. But due to data changes and 

sloppy data entry, errors such as duplicate 

entries might occur, making data cleansing 

and in particular duplicate detection 

indispensable. However, the pure size of 

today’s datasets render duplicate detection 

processes expensive. Online retailers, for 

example, offer huge catalogs comprising a 

constantly growing set of items from many 

different suppliers. As independent persons 

change the product portfolio, duplicates 

arise. Although there is an obvious need for 

deduplication, online shops without 

downtime cannot afford traditional 

deduplication. Progressive duplicate 

detection identifies most duplicate pairs 

early in the detection process. Instead of 

reducing the overall time needed to finish 

the entire process, progressive approaches 

try to reduce the average time after which a 

duplicate is found. Early termination, in 

particular, then yields more complete results 

on a progressive algorithm than on any 

traditional approach. As a preview of 

Section 8.3, Fig. 1 depicts the number of 

duplicates found by three different duplicate 
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detection algorithms in relation to their 

processing time: The incremental algorithm 

reports new duplicates at an almost constant 

frequency. This output behavior is common 

for state-of-the-art duplicate detection 

algorithms. In this work, however, we focus 

on progressive algorithms, which try to 

report most matches early on, while possibly 

slightly increasing their overall runtime. To 

achieve this, they need to estimate the 

similarity of all comparison candidates in 

order to compare most promising record 

pairs first. With the pair selection techniques 

of the duplicate detection process, there 

exists a trade-off between the amount of 

time needed to run a duplicate detection 

algorithm and the completeness of the 

results. Progressive techniques make this 

trade-off more beneficial as they deliver 

more complete results in shorter amounts of 

time. Furthermore, they make it easier for 

the user to define this trade-off, because the 

detection time or result size can directly be 

specified instead of parameters whose 

influence on detection time and result size is 

hard to guess. We present several use cases 

where this becomes important: 

1) A user has only limited, maybe unknown 

time for data cleansing and wants to make 

best possible use of it. Then, simply start the 

algorithm and terminate it when needed. The 

result size will be maximized. 2) A user has 

little knowledge about the given data but 

still needs to configure the cleansing 

process. Then, let the progressive algorithm 

choose window/block sizes and keys 

automatically. 3) A user needs to do the 

cleaning interactively to, for instance, find 

good sorting keys by trial and error. Then, 

run the progressive algorithm repeatedly; 

each run quickly reports possibly large 

results. 4) A user has to achieve a certain 

recall. Then, use the result curves of 

progressive algorithms to estimate how 

many more duplicates can be found further; 

in general, the curves asymptotically 

converge against the real number of 

duplicates in the dataset. We propose two 

novel, progressive duplicate detection 

algorithms namely progressive sorted 

neighborhood method (PSNM), which 

performs best on small and almost clean 

datasets, and progressive blocking (PB), 

which performs best on large and very dirty 

datasets. Both enhance the efficiency of 

duplicate detection even on very large 

datasets. In comparison to traditional 

duplicate detection, progressive duplicate 

detection satisfies two conditions [1]: 
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Improved early quality. Let t be an arbitrary 

target time at which results are needed. Then 

the progressive algorithm discovers more 

duplicate pairs at t than the corresponding 

traditional algorithm. Typically, t is smaller 

than the overall runtime of the traditional 

algorithm. Same eventual quality. If both a 

traditional algorithm and its progressive 

version finish execution, without early 

termination at t, they produce the same 

results. 

Given any fixed-size time slot in which data 

cleansing is possible, progressive algorithms 

try to maximize their efficiency for that 

amount of time. To this end, our algorithms 

PSNM and PB dynamically adjust their 

behavior by automatically choosing optimal 

parameters, e.g., window sizes, block sizes, 

and sorting keys, rendering their manual 

specification superfluous. In this way, we 

significantly ease the parameterization 

complexity for duplicate detection in general 

and contribute to the development of more 

user interactive applications: We can offer 

fast feedback and alleviate the often difficult 

parameterization of the algorithms. In 

summary, our contributions are the 

following: 

� We propose two dynamic progressive 

duplicate detection algorithms, PSNM and 

PB, which expose different strengths and 

outperform current approaches. � We 

introduce a concurrent progressive approach 

for the multi-pass method and adapt an 

incremental transitive closure algorithm that 

together form the first complete progressive 

duplicate detection workflow. � We define a 

novel quality measure for progressive 

duplicate detection to objectively rank the 

performance of different approaches. � We 

exhaustively evaluate on several real-world 

datasets testing our own and previous 

algorithms. The duplicate detection 

workflow comprises the three steps pair-

selection, pair-wise comparison, and 

clustering. For a progressive workflow, only 

the first and last step need to be modified. 

Therefore, we do not investigate the 

comparison step and propose algorithms that 

are independent of the quality of the 

similarity function. Our approaches build 

upon the most commonly used methods, 

sorting and (traditional) blocking, and thus 

make the same assumptions: duplicates are 

expected to be sorted close to one another or 

grouped in same buckets, respectively. 

Paper organization. Section 2 examines 

related work. Sections 3 and 4 introduce the 
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PSNM and the PB algorithm, which 

progressively find duplicates based on 

windowing and blocking techniques, 

respectively. Section 5 contributes the 

Attribute Concurrency multi-pass strategy, 

which enables PSNM and PB to 

automatically choose good key attributes. 

We discuss the incremental transitive 

closure calculation in Section 6 and define a 

novel quality measure for progressiveness in 

Section 7. Section 8 comprehensively 

evaluates our algorithms, showing that they 

can double the efficiency of traditional 

duplicate detection algorithms. Section 9 

concludes this paper and discusses future 

work. 

2 RELATED WORK 

Much research on duplicate detection also 

known as entity resolution and by many 

other names, focuses on pairselection 

algorithms that try to maximize recall on the 

one hand and efficiency on the other hand. 

The most prominent algorithms in this area 

are Blocking  and the sorted neighborhood 

method (SNM) . Adaptive techniques. 

Previous publications on duplicate detection 

often focus on reducing the overall runtime. 

Thereby, some of the proposed algorithms 

are already capable of estimating the quality 

of comparison candidates .The algorithms 

use this information to choose the 

comparison candidates more carefully. For 

the same reason, other approaches utilize 

adaptive windowing techniques, which 

dynamically adjust the window size 

depending on the amount of recently found 

duplicates . These adaptive techniques 

dynamically improve the efficiency of 

duplicate detection, but in contrast to our 

progressive techniques, they need to run for 

certain periods of time and cannot maximize 

the efficiency for any given time slot. 

Progressive techniques. In the last few years, 

the economic need for progressive 

algorithms also initiated some concrete 

studies in this domain. For instance, pay-as-

you-go algorithms for information 

integration on large scale datasets have been 

presented]. Other works introduced 

progressive data cleansing algorithms for the 

analysis of sensor data streams. However, 

these approaches cannot be applied to 

duplicate detection. Xiao et al. proposed a 

top-k similarity join that uses a special index 

structure to estimate promising comparison 

candidates]. This approach progressively 

resolves duplicates and also eases the 

parameterization problem. Although the 

result of this approach is similar to our 
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approaches (a list of duplicates almost 

ordered by similarity), the focus differs: 

Xiao et al. find the top-k most similar 

duplicates regardless of how long this takes 

by weakening the similarity threshold; we 

find as many duplicates as possible in a 

given time. That these duplicates are also the 

most similar ones is a side effect of our 

approaches. Pay-As-You-Go Entity 

Resolution by Whang et al. introduced three 

kinds of progressive duplicate detection 

techniques, called “hints” [1]. A hint defines 

a probably good execution order for the 

comparisons in order to match promising 

record pairs earlier than less promising 

record pairs. However, all presented hints 

produce static orders for the comparisons 

and miss the opportunity to dynamically 

adjust the comparison order at runtime based 

on intermediate results. Some of our 

techniques directly address this issue. 

Furthermore, the presented duplicate 

detection approaches calculate a hint only 

for a specific partition, which is a (possibly 

large) subset of records that fits into main 

memory. By completing one partition of a 

large dataset after another, the overall 

duplicate detection process is no longer 

progressive. This issue is only partly 

addressed in [1], which proposes to calculate 

the hints using all partitions. The algorithms 

presented in our paper use a global ranking 

for the comparisons and consider the limited 

amount of available main memory. The third 

issue of the algorithms introduced by Whang 

et al. relates to the proposed pre-partitioning 

strategy: 

3 PROGRESSIVE SNM  

The progressive sorted neighborhood 

method is based on the traditional sorted 

neighborhood method PSNM sorts the input 

data using a predefined sorting key and only 

compares records that are within a window 

of records in the sorted order. The intuition 

is that records that are close in the sorted 

order are more likely to be duplicates than 

records that are far apart, because they are 

already similar with respect to their sorting 

key. More specifically, the distance of two 

records in their sort ranks (rank-distance) 

gives PSNM an estimate of their matching 

likelihood. The PSNM algorithm uses this 

intuition to iteratively vary the window size, 

starting with a small window of size two that 

quickly finds the most promising records. 

This static approach has already been 

proposed as the sorted list of record pairs 

(SLRPs) hint [1]. The PSNM algorithm 

differs by dynamically changing the 
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execution order of the comparisons based on 

intermediate results (Look-Ahead). 

Furthermore, PSNM integrates a progressive 

sorting phase (MagpieSort) and can 

progressively process significantly larger 

datasets. 

3.1 PSNM Algorithm  

Algorithm 1 depicts our implementation of 

PSNM. The algorithm takesfive input 

parameters: D is a reference to the data, 

which has not been loaded from disk yet. 

The sorting key K defines the attribute or 

attribute combination that should be used in 

the sorting step. W specifies the maximum 

window size, which corresponds to the 

window size of the traditional sorted 

neighborhood method. When using early 

termination, this parameter can be set to an 

optimistically high default value. Parameter 

I defines the enlargement interval for the 

progressive iterations. Section 3.2 describes 

this parameter in more detail. For now, 

assume it has the default value 1. The last 

parameter N specifies the number of records 

in the dataset.. 

Algorithm 1. Progressive Sorted 

Neighborhood Require: dataset reference D, 

sorting key K, window size W, enlargement 

interval size I, number of records N 1: 

procedure PSNM(D, K, W, I, N) 2: pSize 

calcPartitionSize(D) 3: pNum N=ðpSize�W 

þ1Þ de 4: array order size N as Integer 5: 

array recs size pSize as Record 6: order 

sortProgressive(D, K, I, pSize, pNum) 7: for 

currentI 2 to W=Ide do 8: for currentP 1 to 

pNum do 9: recs loadPartition(D, currentP) 

10: for dist2range(currentI, I, W) do 11: for i 

0 to recsjj �dist do 12: pair recs½i�; 

recs½iþdist�hi 13: if compare(pair) then 14: 

emit(pair) 15: lookAhead(pair) 

In many practical scenarios, the entire 

dataset will not fit in main memory. To 

address this, PSNM operates on a partition 

of the dataset at a time. The PSNM 

algorithm calculates an appropriate partition 

size pSize, i.e., the maximum number of 

records that fit in memory, using the 

pessimistic sampling function 

calcPartitionSize(D) in Line 2: If the data is 

read from a database, the function can 

calculate the size of a record from the data 

types and match this to the available main 

memory. Otherwise, it takes a sample of 

records and estimates the size of a record 

with the largest values for each field. In Line 

3, the algorithm calculates the number of 

necessary partitions pNum, while 
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considering a partition overlap of W �1 

records to slide the window across their 

boundaries. Line 4 defines the order-array, 

which stores the order of records with regard 

to the given key K. By storing only record 

IDs in this array, we assume that it can be 

kept in memory. To hold the actual records 

of a current partition, PSNM declares the 

recs-array in Line 5. In Line 6, PSNM sorts 

the dataset D by key K. The sorting is done 

by applying our progressive sorting 

algorithm Magpie, which we explain in 

Section 3.2. Afterwards, PSNM linearly 

increases the window size from 2 to the 

maximum window size W in steps of I (Line 

7). In this way, promising close neighbors 

are selected first and less promising far-

away neighbors later on. For each of these 

progressive iterations, PSNM reads the 

entire dataset once. Since the load process is 

done partition-wise, PSNM sequentially 

iterates (Line 8) and loads (Line 9) all 

partitions. To process a loaded partition, 

PSNM first iterates overall record rank-

distances dist that are within the current 

window interval currentI. ForI ¼ 1 this is 

only one distance, namely the record rank-

distance of the current main-iteration. In 

Line 11, PSNM then iterates all records in 

the current partition to compare them to 

their dist-neighbor.  

3.2 Progressiveness Techniques Window 

interval. 

 PSNM needs to load all records in each 

progressive iteration and loading partitions 

from disk is expensive. Therefore, we 

introduced the window enlargement interval 

I in Line 7 and 10. It defines how many dist-

iterations PSNM should execute on each 

loaded partition. For instance, if we set I ¼ 

3, the algorithm loads the first partition to 

sequentially execute the rank-distances 1 to 

3, then it loads the second partition to 

execute the same interval and so on until all 

partitions have been loaded once. 

Afterwards, all partitions are loaded again to 

run dist 4 to 6 and so forth. This strategy 

reduces the number of load processes. 

However, the theoretical progressiveness 

decreases as well, because we execute 

comparisons with a lower probability of 

matching earlier. So I constitutes a trade-off 

parameter that balances progressiveness and 

overall runtime. Partition caching. As we 

cannot assume the input to be physically 

sorted, the algorithm needs to repeatedly 

reiterate the entire file searching for the 

records of the next partition, which contains 
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the currently most promising comparison 

candidates. So, all records need to be read 

when loading the next partition. To 

overcome this issue, we implemented 

Partition Caching within the 

loadPartition(D, currentP) function in Line 

9: If a partition is read for the first time, the 

function collects the requested records from 

the input dataset and materializes them to a 

new, dedicated cache file on disk. When the 

partition is later requested again, the 

function loads it from this cache file, 

reducing the costs for PSNM’s additional 

I/O operations (and for possible parsing 

efforts on the file-input). Look-ahead. After 

sorting the input dataset, we find areas of 

high and low duplicate density, particularly 

if duplicates occur in larger clusters, i.e., 

groups of records that are all pair-wise 

duplicates. The Look-Ahead strategy uses 

this observation to adjust the ranking of 

comparison candidates at runtime: If record 

pairði;jÞhas been identified as a duplicate, 

then the pairsðiþ1;jÞandði;j þ1Þhave a high 

chance of being duplicates of the same 

cluster. Therefore, PSNM immediately 

compares them instead of waiting for the 

next progressive iteration. If one of the look-

ahead comparisons detects another 

duplicate, a further look-ahead is recursively 

executed. In this way, PSNM iterates larger 

neighborhoods around duplicates to 

progressively reveal entire clusters. To avoid 

redundant comparisons in different look-

aheads or in a following progressive 

iteration, PSNM maintains all executed 

comparisons in a temporary data structure. 

This behavior is implemented by the 

lookAhead(pair) function in Line 15 of our 

PSNM implementation. Since the look-

ahead works recursively, it may perform 

comparisons that are beyond the given 

maximum window size W. Hence, it can 

find duplicates that cannot be found by the 

traditional Sorted Neighborhood Method. 

For easier comparison, we limited the 

maximum look-ahead rank-distance to W in 

our evaluation. In summary, PSNM 

automatically preferslocally promising 

comparisons in the otherwise static 

execution order by adaptively comparing 

record pairs in the neighborhood of 

previously detected duplicates. MagpieSort.  

4 PROGRESSIVE BLOCKING In 

contrast to windowing algorithms, blocking 

algorithms assign each record to a fixed 

group of similar records (the blocks) and 

then compare all pairs of records within 

these groups. Progressive blocking is a 
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novel approach that builds upon an 

equidistant blocking technique and the 

successive enlargement of blocks. Like 

PSNM, it also presorts the records to use 

their rank-distance in this sorting for 

similarity estimation. Based on the sorting, 

PB first creates and then progressively 

extends a fine-grained blocking. These block 

extensions are specifically executed on 

neighborhoods around already identified 

duplicates, which enables PB to expose 

clusters earlier than PSNM. Sections 8.3 and 

8.4 directly compare the performance of 

PB and PSNM showing that PB is indeed 

preferable for datasets containing many 

large duplicate clusters. 

4.1 PB Intuition  

how PB chooses comparison candidates 

using the block comparison matrix. To 

create this matrix, a preprocessing step has 

already sorted the records that form the 

Blocks 1-8 (depicted as vertical and 

horizontal axes). Each block within the 

block comparison matrix represents the 

comparisons of all records in one block with 

all records in another block. For instance, 

the field in the 4th row and the 5th column 

represents the comparisons of all records in 

Block 4 with all records in Block 5. 

Assuming a symmetric similarity measure, 

we can ignore the bottom left part of the 

matrix. The exemplary number of found 

duplicates is depicted in the according fields. 

In this example, the block comparison ð4;5Þ 

delivered nine duplicates. Because of the 

equidistant blocking, all blocks have the 

same size. This eases the progressive 

extension process that we describe in the 

following. Only the last block might be 

smaller, if the dataset is not divisible by the 

desired block size. In the initial run, PB 

defines the blocking and executes all 

comparisons within each block. For the first 

progressive iteration, the algorithm then 

selects those block pairs that delivered the 

most duplicates in the initial run. In the 

example, these are the block pairs ð2;2Þ and 

ð5;5Þ. Because these two block pairs 

represent the areas with the currently highest 

duplicate density, the PB algorithm chooses 

ð1;2Þ and ð2;3Þ to progressively extend the 

first block pair and ð4;5Þ andð5;6Þto extend 

the second block pair. Having compared the 

four new block pairs, PB starts the second 

iteration. In this iteration, ð4;5Þ and ð5;6Þ 

are the best block pairs and, hence, 

extended. The results of this iteration then 

influences the third iteration and so on. In 
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this way, PB dynamically processes those 

neighborhoods that are expected to contain 

most new duplicates. In case of ties, the 

algorithm prefers block pairs with a smaller 

rank-distance, because the distance in the 

sort rank still defines the expected similarity 

of the records. The extensions continue until 

all blocks have been compared or a distance 

threshold for all remaining block pairs has 

been reached. 

4.2 PB Algorithm 

 Algorithm 2 lists our implementation of PB. 

The algorithm accepts five input parameters: 

The dataset reference D specifies the dataset 

to be cleaned and the key attribute or key 

attribute combination K defines the sorting. 

The parameter R limits the maximum block 

range, which is the maximum rank-distance 

of two blocks in a block pair, and S specifies 

the size of the blocks. We discuss 

appropriate values for R and S in the next 

section. Finally, N is the size of the input 

dataset. 

Algorithm 2. Progressive Blocking Require: 

dataset reference D, key attribute K, 

maximum block range R, block size S and 

record number N 1: procedure PB(D, K, R, 

S, N) 2: pSize calcPartitionSize(D) 3: bPerP 

pSize=Sbc 4: bNum N=Sde 5: pNum 

bNum=bPerPde 6: array order size N as 

Integer 7: array blocks size bPerP as 

Integer;Record½� hi 8: priority queue 

bPairs as Integer;Integer;Integer hi 9: bPairs 

1;1;hi ;... ; bNum;bNum; hi fg 10: order 

sortProgressive(D, K, S, bPerP, bPairs) 11: 

for i 0 to pNum�1 do 12: pBPs get(bPairs, 

i�bPerP, (iþ1)�bPerP) 13: blocks 

loadBlocks(pBPs, S, order) 14: 

compare(blocks, pBPs, order) 15: while 

bPairs is not empty do 16: pBPs fg 17: 

bestBPs takeBest( bPerP=4 bc , bPairs, R) 

18: for bestBP2bestBPs do 19: if 

bestBP[1]�bestBP[0] < R then 20: pBPs 

pBPs[extend(bestBP) 21: blocks 

loadBlocks(pBPs, S, order) 22: 

compare(blocks, pBPs, order) 23: bPairs 

bPairs[pBPs 24: procedure compare(blocks, 

pBPs, order) 25: for pBP2pBPs do 26: 

dPairs;cNum hi comp(pBP, blocks, order) 

27: emit(dPairs) 28: pBP[2] dPairsjj / cNum 

At first, PB calculates the number of records 

per partition pSize by using a pessimistic 

sampling function in Line 2. The algorithm 

also calculates the number of loadable 

blocks per partition bPerP, the total number 

of blocks bNum, and the total number of 

partitions pNum. In the Lines 6 to 8, PB 
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then defines the three main data structures: 

the order-array, which stores the ordered list 

of record IDs, the blocks-array, which holds 

the current partition of blocked records, and 

the bPairs-list, which stores all recently 

evaluated block pairs. Thereby, a block pair 

is represented as a triple of 

blockNr1;blockNr2;duplicatesPerCompariso

n hi . We implemented the bPairs-list as a 

priority queue, because the algorithm 

frequently reads the top elements from this 

list. In the 

followingLine10,thePBalgorithmsortsthedat

asetusingthe progressive MagpieSort 

algorithm. Afterwards, the Lines 11 to 14 

load all blocks partition-wise from disk to 

execute the comparisonswithineachblock. 

After the preprocessing, the PB algorithm 

starts progressively extending the most 

promising block pairs (Lines 15 to 23). In 

each loop, PB first takes those block pairs 

bestBPs from the bPairs-list that reported the 

highest duplicate density. Thereby, at most 

bPerP=4 block pairs can be taken,because 

the algorithm needs to load two blocks per 

bestBP and each extension of a bestBP 

delivers two partition block pairs pBPs in 

Line 20. However, if such an extension 

exceeds the maximum block range R, the 

last bestBP is discarded. Having 

successfully defined the most promising 

block pairs, Line21loads thecorresponding 

blocksfromdisktocompare the pBPs in Line 

22. The compare(blocks, pBPs, 

order)procedure is listed in Lines 24 to 28. 

For all partition block pairs pBP, the 

procedure compares each record of the first 

block to all records of the second block. The 

identified duplicate pairs dPairs are then 

emitted in Line 27. Furthermore, Line 28 

assigns the duplicate pairs to the current 

pBP to later rank the duplicate density of 

this block pair with the density in other 

block pairs. Thereby, the amount of 

duplicates is normalized by the number of 

comparisons, because the last block is 

usually smaller than all other blocks. In Line 

23, the algorithm adds the previously 

compared pBPs to the bPairslist to use them 

in the next progressive iteration. If the PB 

algorithm is not terminated prematurely, it 

automatically finishes when the list of bPairs 

is empty, e.g., no new block 

pairswithinthemaximumblockrangeRcanbef

ound. 

4.3 Blocking Techniques Block size. 

 A block pair consisting of two small blocks 

defines only few comparisons. Using such 

small blocks, the PB algorithm carefully 
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selects the most promising comparisons and 

avoids many less promising comparisons 

from a wider neighborhood. However, block 

pairs based on small blocks cannot 

characterize the duplicate density in their 

neighborhood well, because they represent a 

too small sample. A block pair consisting of 

large blocks, in contrast, may define too 

many, less promising comparisons, but 

produce better samples for the extension 

step. The block size parameter S, therefore, 

trades off the execution of non-promising 

comparisons and the extension quality. In 

preliminary experiments, we identified five 

records per block to be a generally good and 

not sensitive value. Maximum block range. 

The maximum block range parameter R is 

superfluous when using early termination. 

For our evaluation, however, we use this 

parameter to restrict the PB algorithm to 

approximately the same comparisons 

executed by the traditional sorted 

neighborhood method. We cannot restrict 

PB to execute exactly the same 

comparisons, because the selection of 

comparison candidates is more fine-grained 

by using a window than by using blocks. 

Nevertheless, the calculation of R as R 

¼bwindowSize S ccauses PB to execute 

only minimally fewer comparisons. 

Extension strategy. The extend(bestBP) 

function in Line 20 of Algorithm 2 returns 

some block pairs in the neighborhood of the 

given bestBP. In our implementation, the 

function extends a block pair ði;jÞ to the 

block pairs ðiþ1;jÞ andði;j þ1Þas shown in 

Fig. 2. More eager extension strategies that 

select more block pairs from the 

neighborhood increase the progressiveness, 

if many large duplicate clusters are 

expected. By using a block size S close to 

the average duplicate cluster size, more 

eager extension strategies have, however, 

not shown a significant impact on PB’s 

performance in our experiments. The benefit 

of detecting some cluster duplicates earlier 

was usually as high as the drawback of 

executing fruitless comparisons. 

5 ATTRIBUTE CONCURRENCY 

 The best sorting or blocking key for a 

duplicate detection algorithm is generally 

unknown or hard to find. Most duplicate 

detection frameworks tackle this key 

selection problem by applying the multi-

pass execution method. This method 

executes the duplicate detection algorithm 

multiple times using different keys in each 

pass. However, the execution order among 

the different keys is arbitrary. Therefore, 
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favoring good keys over poorer keys already 

increases the progressiveness of the multi-

pass method. In this section, we present two 

multi-pass algorithms that dynamically 

interleave the different passes based on 

intermediate results to execute promising 

iterations earlier. The first algorithm is the 

attribute concurrent PSNM (AC-PSNM), 

which is the progressive implementation of 

the multi-pass method for the PSNM 

algorithm, and the second algorithm is the 

attribute concurrent PB (AC-PB), which is 

the corresponding implementation for the 

PB algorithm. 

5.1 Attribute Concurrent PSNM 

 The basic idea of AC-PSNM is to weight 

and re-weight all given keys at runtime and 

to dynamically switch between the keys 

based on intermediate results. Thereto, the 

algorithm precalculates the sorting for each 

key attribute. The precalculation also 

executes the first progressive iteration for 

every key to count the number of results. 

Afterwards, the algorithm ranks the different 

keys by their result counts. The best key is 

then selected to process its next iteration. 

The number of results of this iteration can 

change the ranking of the current key so that 

another key might be chosen to execute its 

next iteration. In this way, the algorithm 

prefers the most promising key in each 

iteration. Algorithm 3 depicts our 

implementation of AC-PSNM. It takes the 

same five parameters as the basic PSNM 

algorithm but a set of keys Ks instead of a 

single key. First, AC-PSNM calculates the 

partition size pSize and the overall number 

of partitions pNum. During execution, each 

key is assigned an own state. To encode 

these states, the algorithm defines three 

basic data structures in Lines 4 to 6: an 

orders-array, which stores the different 

orders, a windowsarray, which stores the 

current window range for each key, and a 

dCounts-array, which stores the keys’ 

current duplicate counts. To initialize these 

data structures, Line 7 iterates all given 

keys. For each key, the algorithm uses 

MagpieSort in Line 8 to create the 

corresponding order. Simultaneously, it 

calculates and counts the duplicates of the 

key’s first progressive iteration. In Line 9, 

AC-PSNM then stores the number 2 as the 

recently used window range for the current 

key. 

Algorithm 3. Attribute Concurrent PSNM 

Require: dataset reference D, sorting keys 

Ks, window size W, enlargement interval 
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size I and record number N 1: procedure 

AC-PSNM(D, Ks, W, I, N) 2: pSize 

calcPartitionSize(D) 3: pNum N=ðpSize�W 

þ1Þ de 4: array orders dimension Ksj j� N 

as Integer 5: array windows size Ksjj as 

Integer 6: array dCounts size Ksjj as Integer 

7: for k 0 to Ksj j� 1 do 8: orders½k�; 

dCounts½k� hi sortProgressive(D, I, 

Ks½k�, pSize, pNum) 9: windows½k� 2 

10: while9w2windows : w < W do 11: k 

findBestKey(dCounts, windows) 12: 

windows½k� windows½k�þ1 13: dPairs 

process(D, I, N, orders½k�, windows½k�, 

pSize, pNum) 14: dCounts½k� dPairsjj 

After initialization, AC-PSNM enters the 

main loop in Line 10. This loop continues 

until the maximum window size W has been 

reached with all keys. In the loop’s body, the 

algorithm first selects the key k that 

delivered the most duplicates in the last 

iteration by consulting the dCountsarray in 

Line 11. To execute the next progressive 

iteration for k, the algorithm first increases 

the corresponding window range by one. 

Then, it calls the process(...) function that 

runs the PSNM algorithm with only the 

specified rankdistance. Afterwards, Line 14 

updates the duplicate count of the current 

key with the amount of newly found 

duplicates. Due to the update, AC-PSNM 

might select another best key in the next 

iteration. In this way, the algorithm 

dynamically re-ranks the sorting keys. Note 

that the process(...) function in Line 13 

handles record comparisons slightly 

different than MagpieSort in Line 8. Since 

the initialization uses the keys in arbitrary 

order, MagpieSort counts all duplicates that 

are found in the first iterations to treat all 

keys equally. Afterwards, the process(...) 

function reports only new duplicates that 

have not been found before with a different 

key. This change in behavior guarantees that 

the progressive main loop always chooses 

the currently most promising key. Counting 

only new duplicates also causes the 

algorithm to automatically rank those keys 

last, whose orders are subsumed by other 

keys’ orders. For instance, “postcode” might 

displace “city” as a key in an address 

dataset, because it usually generates a 

similar but more fine-grained order. 

5.2 Attribute Concurrent  

PB Instead of scheduling progressive 

iterations of different keys, AC-PB directly 

schedules the bPair-comparisons of all keys: 

AC-PB first calculates the initial block pairs 

and their duplicate counts for all keys (see 
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Fig. 2 in Section 4.1); then, it takes all block 

pairs together and ranks them regardless of 

the key, with which the individual blocks 

have initially been created. This approach 

lets AC-PB rank the comparisons even more 

precisely than AC-PSNM.  

6 CONCLUSION AND FUTURE WORK  

This paper introduced the progressive sorted 

neighborhood method and progressive 

blocking. Both algorithms increase the 

efficiency of duplicate detection for 

situations with limited execution time; they 

dynamically change the ranking of 

comparison candidates based on 

intermediate results to execute promising 

comparisons first and less promising 

comparisons later. To determine the 

performance gain of our algorithms, we 

proposed a novel quality measure for 

progressiveness that integrates seamlessly 

with existing measures. Using this measure, 

experiments showed that our approaches 

outperform the traditional SNM by up to 

100 percent and related work by up to 30 

percent. For the construction of a fully 

progressive duplicate detection workflow, 

we proposed a progressive sorting method, 

Magpie, a progressive multi-pass execution 

model, Attribute Concurrency, and an 

incremental transitive closure algorithm. 

The adaptations AC-PSNM and AC-PB use 

multiple sort keys concurrently to interleave 

their progressive iterations. By analyzing 

intermediate results, both approaches 

dynamically rank the different sort keys at 

runtime, drastically easing the key selection 

problem. In future work, we want to 

combine our progressive approaches with 

scalable approaches for duplicate detection 

to deliver results even faster. In particular, 

Kolb et al. introduced a two phase parallel 

SNM , which executes a traditional SNM on 

balanced, overlapping partitions. Here, we 

can instead use our PSNM to progressively 

find duplicates in parallel. 
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