
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

Duplicate Detection of Data sets progressively

Ms. T.SUMANA SRI Mr.P.VIJAY

Abstract—Duplicate detection is the

process of identifying multiple

representations of same real world entities.

Today, duplicate detection methods need to

process ever larger datasets in ever shorter

time: maintaining the quality of a dataset

becomes increasingly difficult. We present

two novel, progressive duplicate detection

algorithms that significantly increase the

efficiency of finding duplicates if the

execution time is limited: They maximize

the gain of the overall process within the

time available by reporting most results

much earlier than traditional approaches.

Comprehensive experiments show that our

progressive algorithms can double the

efficiency over time of traditional duplicate

detection and significantly improve upon

related work.

1 INTRODUCTION

Data are among the most important assets of

a company. But due to data changes and

sloppy data entry, errors such as duplicate

entries might occur, making data cleansing

and in particular duplicate detection

indispensable. However, the pure size of

today’s datasets render duplicate detection

processes expensive. Online retailers, for

example, offer huge catalogs comprising a

constantly growing set of items from many

different suppliers. As independent persons

change the product portfolio, duplicates

arise. Although there is an obvious need for

deduplication, online shops without

downtime cannot afford traditional

deduplication. Progressive duplicate

detection identifies most duplicate pairs

early in the detection process. Instead of

reducing the overall time needed to finish

the entire process, progressive approaches

try to reduce the average time after which a

duplicate is found. Early termination, in

particular, then yields more complete results

on a progressive algorithm than on any

traditional approach. As a preview of

Section 8.3, Fig. 1 depicts the number of

duplicates found by three different duplicate

 2

detection algorithms in relation to their

processing time: The incremental algorithm

reports new duplicates at an almost constant

frequency. This output behavior is common

for state-of-the-art duplicate detection

algorithms. In this work, however, we focus

on progressive algorithms, which try to

report most matches early on, while possibly

slightly increasing their overall runtime. To

achieve this, they need to estimate the

similarity of all comparison candidates in

order to compare most promising record

pairs first. With the pair selection techniques

of the duplicate detection process, there

exists a trade-off between the amount of

time needed to run a duplicate detection

algorithm and the completeness of the

results. Progressive techniques make this

trade-off more beneficial as they deliver

more complete results in shorter amounts of

time. Furthermore, they make it easier for

the user to define this trade-off, because the

detection time or result size can directly be

specified instead of parameters whose

influence on detection time and result size is

hard to guess. We present several use cases

where this becomes important:

1) A user has only limited, maybe unknown

time for data cleansing and wants to make

best possible use of it. Then, simply start the

algorithm and terminate it when needed. The

result size will be maximized. 2) A user has

little knowledge about the given data but

still needs to configure the cleansing

process. Then, let the progressive algorithm

choose window/block sizes and keys

automatically. 3) A user needs to do the

cleaning interactively to, for instance, find

good sorting keys by trial and error. Then,

run the progressive algorithm repeatedly;

each run quickly reports possibly large

results. 4) A user has to achieve a certain

recall. Then, use the result curves of

progressive algorithms to estimate how

many more duplicates can be found further;

in general, the curves asymptotically

converge against the real number of

duplicates in the dataset. We propose two

novel, progressive duplicate detection

algorithms namely progressive sorted

neighborhood method (PSNM), which

performs best on small and almost clean

datasets, and progressive blocking (PB),

which performs best on large and very dirty

datasets. Both enhance the efficiency of

duplicate detection even on very large

datasets. In comparison to traditional

duplicate detection, progressive duplicate

detection satisfies two conditions [1]:

 3

Improved early quality. Let t be an arbitrary

target time at which results are needed. Then

the progressive algorithm discovers more

duplicate pairs at t than the corresponding

traditional algorithm. Typically, t is smaller

than the overall runtime of the traditional

algorithm. Same eventual quality. If both a

traditional algorithm and its progressive

version finish execution, without early

termination at t, they produce the same

results.

Given any fixed-size time slot in which data

cleansing is possible, progressive algorithms

try to maximize their efficiency for that

amount of time. To this end, our algorithms

PSNM and PB dynamically adjust their

behavior by automatically choosing optimal

parameters, e.g., window sizes, block sizes,

and sorting keys, rendering their manual

specification superfluous. In this way, we

significantly ease the parameterization

complexity for duplicate detection in general

and contribute to the development of more

user interactive applications: We can offer

fast feedback and alleviate the often difficult

parameterization of the algorithms. In

summary, our contributions are the

following:

� We propose two dynamic progressive

duplicate detection algorithms, PSNM and

PB, which expose different strengths and

outperform current approaches. � We

introduce a concurrent progressive approach

for the multi-pass method and adapt an

incremental transitive closure algorithm that

together form the first complete progressive

duplicate detection workflow. � We define a

novel quality measure for progressive

duplicate detection to objectively rank the

performance of different approaches. � We

exhaustively evaluate on several real-world

datasets testing our own and previous

algorithms. The duplicate detection

workflow comprises the three steps pair-

selection, pair-wise comparison, and

clustering. For a progressive workflow, only

the first and last step need to be modified.

Therefore, we do not investigate the

comparison step and propose algorithms that

are independent of the quality of the

similarity function. Our approaches build

upon the most commonly used methods,

sorting and (traditional) blocking, and thus

make the same assumptions: duplicates are

expected to be sorted close to one another or

grouped in same buckets, respectively.

Paper organization. Section 2 examines

related work. Sections 3 and 4 introduce the

 4

PSNM and the PB algorithm, which

progressively find duplicates based on

windowing and blocking techniques,

respectively. Section 5 contributes the

Attribute Concurrency multi-pass strategy,

which enables PSNM and PB to

automatically choose good key attributes.

We discuss the incremental transitive

closure calculation in Section 6 and define a

novel quality measure for progressiveness in

Section 7. Section 8 comprehensively

evaluates our algorithms, showing that they

can double the efficiency of traditional

duplicate detection algorithms. Section 9

concludes this paper and discusses future

work.

2 RELATED WORK

Much research on duplicate detection also

known as entity resolution and by many

other names, focuses on pairselection

algorithms that try to maximize recall on the

one hand and efficiency on the other hand.

The most prominent algorithms in this area

are Blocking and the sorted neighborhood

method (SNM) . Adaptive techniques.

Previous publications on duplicate detection

often focus on reducing the overall runtime.

Thereby, some of the proposed algorithms

are already capable of estimating the quality

of comparison candidates .The algorithms

use this information to choose the

comparison candidates more carefully. For

the same reason, other approaches utilize

adaptive windowing techniques, which

dynamically adjust the window size

depending on the amount of recently found

duplicates . These adaptive techniques

dynamically improve the efficiency of

duplicate detection, but in contrast to our

progressive techniques, they need to run for

certain periods of time and cannot maximize

the efficiency for any given time slot.

Progressive techniques. In the last few years,

the economic need for progressive

algorithms also initiated some concrete

studies in this domain. For instance, pay-as-

you-go algorithms for information

integration on large scale datasets have been

presented]. Other works introduced

progressive data cleansing algorithms for the

analysis of sensor data streams. However,

these approaches cannot be applied to

duplicate detection. Xiao et al. proposed a

top-k similarity join that uses a special index

structure to estimate promising comparison

candidates]. This approach progressively

resolves duplicates and also eases the

parameterization problem. Although the

result of this approach is similar to our

 5

approaches (a list of duplicates almost

ordered by similarity), the focus differs:

Xiao et al. find the top-k most similar

duplicates regardless of how long this takes

by weakening the similarity threshold; we

find as many duplicates as possible in a

given time. That these duplicates are also the

most similar ones is a side effect of our

approaches. Pay-As-You-Go Entity

Resolution by Whang et al. introduced three

kinds of progressive duplicate detection

techniques, called “hints” [1]. A hint defines

a probably good execution order for the

comparisons in order to match promising

record pairs earlier than less promising

record pairs. However, all presented hints

produce static orders for the comparisons

and miss the opportunity to dynamically

adjust the comparison order at runtime based

on intermediate results. Some of our

techniques directly address this issue.

Furthermore, the presented duplicate

detection approaches calculate a hint only

for a specific partition, which is a (possibly

large) subset of records that fits into main

memory. By completing one partition of a

large dataset after another, the overall

duplicate detection process is no longer

progressive. This issue is only partly

addressed in [1], which proposes to calculate

the hints using all partitions. The algorithms

presented in our paper use a global ranking

for the comparisons and consider the limited

amount of available main memory. The third

issue of the algorithms introduced by Whang

et al. relates to the proposed pre-partitioning

strategy:

3 PROGRESSIVE SNM

The progressive sorted neighborhood

method is based on the traditional sorted

neighborhood method PSNM sorts the input

data using a predefined sorting key and only

compares records that are within a window

of records in the sorted order. The intuition

is that records that are close in the sorted

order are more likely to be duplicates than

records that are far apart, because they are

already similar with respect to their sorting

key. More specifically, the distance of two

records in their sort ranks (rank-distance)

gives PSNM an estimate of their matching

likelihood. The PSNM algorithm uses this

intuition to iteratively vary the window size,

starting with a small window of size two that

quickly finds the most promising records.

This static approach has already been

proposed as the sorted list of record pairs

(SLRPs) hint [1]. The PSNM algorithm

differs by dynamically changing the

 6

execution order of the comparisons based on

intermediate results (Look-Ahead).

Furthermore, PSNM integrates a progressive

sorting phase (MagpieSort) and can

progressively process significantly larger

datasets.

3.1 PSNM Algorithm

Algorithm 1 depicts our implementation of

PSNM. The algorithm takesfive input

parameters: D is a reference to the data,

which has not been loaded from disk yet.

The sorting key K defines the attribute or

attribute combination that should be used in

the sorting step. W specifies the maximum

window size, which corresponds to the

window size of the traditional sorted

neighborhood method. When using early

termination, this parameter can be set to an

optimistically high default value. Parameter

I defines the enlargement interval for the

progressive iterations. Section 3.2 describes

this parameter in more detail. For now,

assume it has the default value 1. The last

parameter N specifies the number of records

in the dataset..

Algorithm 1. Progressive Sorted

Neighborhood Require: dataset reference D,

sorting key K, window size W, enlargement

interval size I, number of records N 1:

procedure PSNM(D, K, W, I, N) 2: pSize

calcPartitionSize(D) 3: pNum N=ðpSize�W

þ1Þ de 4: array order size N as Integer 5:

array recs size pSize as Record 6: order

sortProgressive(D, K, I, pSize, pNum) 7: for

currentI 2 to W=Ide do 8: for currentP 1 to

pNum do 9: recs loadPartition(D, currentP)

10: for dist2range(currentI, I, W) do 11: for i

0 to recsjj �dist do 12: pair recs½i�;

recs½iþdist�hi 13: if compare(pair) then 14:

emit(pair) 15: lookAhead(pair)

In many practical scenarios, the entire

dataset will not fit in main memory. To

address this, PSNM operates on a partition

of the dataset at a time. The PSNM

algorithm calculates an appropriate partition

size pSize, i.e., the maximum number of

records that fit in memory, using the

pessimistic sampling function

calcPartitionSize(D) in Line 2: If the data is

read from a database, the function can

calculate the size of a record from the data

types and match this to the available main

memory. Otherwise, it takes a sample of

records and estimates the size of a record

with the largest values for each field. In Line

3, the algorithm calculates the number of

necessary partitions pNum, while

 7

considering a partition overlap of W �1

records to slide the window across their

boundaries. Line 4 defines the order-array,

which stores the order of records with regard

to the given key K. By storing only record

IDs in this array, we assume that it can be

kept in memory. To hold the actual records

of a current partition, PSNM declares the

recs-array in Line 5. In Line 6, PSNM sorts

the dataset D by key K. The sorting is done

by applying our progressive sorting

algorithm Magpie, which we explain in

Section 3.2. Afterwards, PSNM linearly

increases the window size from 2 to the

maximum window size W in steps of I (Line

7). In this way, promising close neighbors

are selected first and less promising far-

away neighbors later on. For each of these

progressive iterations, PSNM reads the

entire dataset once. Since the load process is

done partition-wise, PSNM sequentially

iterates (Line 8) and loads (Line 9) all

partitions. To process a loaded partition,

PSNM first iterates overall record rank-

distances dist that are within the current

window interval currentI. ForI ¼ 1 this is

only one distance, namely the record rank-

distance of the current main-iteration. In

Line 11, PSNM then iterates all records in

the current partition to compare them to

their dist-neighbor.

3.2 Progressiveness Techniques Window

interval.

 PSNM needs to load all records in each

progressive iteration and loading partitions

from disk is expensive. Therefore, we

introduced the window enlargement interval

I in Line 7 and 10. It defines how many dist-

iterations PSNM should execute on each

loaded partition. For instance, if we set I ¼

3, the algorithm loads the first partition to

sequentially execute the rank-distances 1 to

3, then it loads the second partition to

execute the same interval and so on until all

partitions have been loaded once.

Afterwards, all partitions are loaded again to

run dist 4 to 6 and so forth. This strategy

reduces the number of load processes.

However, the theoretical progressiveness

decreases as well, because we execute

comparisons with a lower probability of

matching earlier. So I constitutes a trade-off

parameter that balances progressiveness and

overall runtime. Partition caching. As we

cannot assume the input to be physically

sorted, the algorithm needs to repeatedly

reiterate the entire file searching for the

records of the next partition, which contains

 8

the currently most promising comparison

candidates. So, all records need to be read

when loading the next partition. To

overcome this issue, we implemented

Partition Caching within the

loadPartition(D, currentP) function in Line

9: If a partition is read for the first time, the

function collects the requested records from

the input dataset and materializes them to a

new, dedicated cache file on disk. When the

partition is later requested again, the

function loads it from this cache file,

reducing the costs for PSNM’s additional

I/O operations (and for possible parsing

efforts on the file-input). Look-ahead. After

sorting the input dataset, we find areas of

high and low duplicate density, particularly

if duplicates occur in larger clusters, i.e.,

groups of records that are all pair-wise

duplicates. The Look-Ahead strategy uses

this observation to adjust the ranking of

comparison candidates at runtime: If record

pairði;jÞhas been identified as a duplicate,

then the pairsðiþ1;jÞandði;j þ1Þhave a high

chance of being duplicates of the same

cluster. Therefore, PSNM immediately

compares them instead of waiting for the

next progressive iteration. If one of the look-

ahead comparisons detects another

duplicate, a further look-ahead is recursively

executed. In this way, PSNM iterates larger

neighborhoods around duplicates to

progressively reveal entire clusters. To avoid

redundant comparisons in different look-

aheads or in a following progressive

iteration, PSNM maintains all executed

comparisons in a temporary data structure.

This behavior is implemented by the

lookAhead(pair) function in Line 15 of our

PSNM implementation. Since the look-

ahead works recursively, it may perform

comparisons that are beyond the given

maximum window size W. Hence, it can

find duplicates that cannot be found by the

traditional Sorted Neighborhood Method.

For easier comparison, we limited the

maximum look-ahead rank-distance to W in

our evaluation. In summary, PSNM

automatically preferslocally promising

comparisons in the otherwise static

execution order by adaptively comparing

record pairs in the neighborhood of

previously detected duplicates. MagpieSort.

4 PROGRESSIVE BLOCKING In

contrast to windowing algorithms, blocking

algorithms assign each record to a fixed

group of similar records (the blocks) and

then compare all pairs of records within

these groups. Progressive blocking is a

 9

novel approach that builds upon an

equidistant blocking technique and the

successive enlargement of blocks. Like

PSNM, it also presorts the records to use

their rank-distance in this sorting for

similarity estimation. Based on the sorting,

PB first creates and then progressively

extends a fine-grained blocking. These block

extensions are specifically executed on

neighborhoods around already identified

duplicates, which enables PB to expose

clusters earlier than PSNM. Sections 8.3 and

8.4 directly compare the performance of

PB and PSNM showing that PB is indeed

preferable for datasets containing many

large duplicate clusters.

4.1 PB Intuition

how PB chooses comparison candidates

using the block comparison matrix. To

create this matrix, a preprocessing step has

already sorted the records that form the

Blocks 1-8 (depicted as vertical and

horizontal axes). Each block within the

block comparison matrix represents the

comparisons of all records in one block with

all records in another block. For instance,

the field in the 4th row and the 5th column

represents the comparisons of all records in

Block 4 with all records in Block 5.

Assuming a symmetric similarity measure,

we can ignore the bottom left part of the

matrix. The exemplary number of found

duplicates is depicted in the according fields.

In this example, the block comparison ð4;5Þ

delivered nine duplicates. Because of the

equidistant blocking, all blocks have the

same size. This eases the progressive

extension process that we describe in the

following. Only the last block might be

smaller, if the dataset is not divisible by the

desired block size. In the initial run, PB

defines the blocking and executes all

comparisons within each block. For the first

progressive iteration, the algorithm then

selects those block pairs that delivered the

most duplicates in the initial run. In the

example, these are the block pairs ð2;2Þ and

ð5;5Þ. Because these two block pairs

represent the areas with the currently highest

duplicate density, the PB algorithm chooses

ð1;2Þ and ð2;3Þ to progressively extend the

first block pair and ð4;5Þ andð5;6Þto extend

the second block pair. Having compared the

four new block pairs, PB starts the second

iteration. In this iteration, ð4;5Þ and ð5;6Þ

are the best block pairs and, hence,

extended. The results of this iteration then

influences the third iteration and so on. In

 10

this way, PB dynamically processes those

neighborhoods that are expected to contain

most new duplicates. In case of ties, the

algorithm prefers block pairs with a smaller

rank-distance, because the distance in the

sort rank still defines the expected similarity

of the records. The extensions continue until

all blocks have been compared or a distance

threshold for all remaining block pairs has

been reached.

4.2 PB Algorithm

 Algorithm 2 lists our implementation of PB.

The algorithm accepts five input parameters:

The dataset reference D specifies the dataset

to be cleaned and the key attribute or key

attribute combination K defines the sorting.

The parameter R limits the maximum block

range, which is the maximum rank-distance

of two blocks in a block pair, and S specifies

the size of the blocks. We discuss

appropriate values for R and S in the next

section. Finally, N is the size of the input

dataset.

Algorithm 2. Progressive Blocking Require:

dataset reference D, key attribute K,

maximum block range R, block size S and

record number N 1: procedure PB(D, K, R,

S, N) 2: pSize calcPartitionSize(D) 3: bPerP

pSize=Sbc 4: bNum N=Sde 5: pNum

bNum=bPerPde 6: array order size N as

Integer 7: array blocks size bPerP as

Integer;Record½� hi 8: priority queue

bPairs as Integer;Integer;Integer hi 9: bPairs

1;1;hi ;... ; bNum;bNum; hi fg 10: order

sortProgressive(D, K, S, bPerP, bPairs) 11:

for i 0 to pNum�1 do 12: pBPs get(bPairs,

i�bPerP, (iþ1)�bPerP) 13: blocks

loadBlocks(pBPs, S, order) 14:

compare(blocks, pBPs, order) 15: while

bPairs is not empty do 16: pBPs fg 17:

bestBPs takeBest(bPerP=4 bc , bPairs, R)

18: for bestBP2bestBPs do 19: if

bestBP[1]�bestBP[0] < R then 20: pBPs

pBPs[extend(bestBP) 21: blocks

loadBlocks(pBPs, S, order) 22:

compare(blocks, pBPs, order) 23: bPairs

bPairs[pBPs 24: procedure compare(blocks,

pBPs, order) 25: for pBP2pBPs do 26:

dPairs;cNum hi comp(pBP, blocks, order)

27: emit(dPairs) 28: pBP[2] dPairsjj / cNum

At first, PB calculates the number of records

per partition pSize by using a pessimistic

sampling function in Line 2. The algorithm

also calculates the number of loadable

blocks per partition bPerP, the total number

of blocks bNum, and the total number of

partitions pNum. In the Lines 6 to 8, PB

 11

then defines the three main data structures:

the order-array, which stores the ordered list

of record IDs, the blocks-array, which holds

the current partition of blocked records, and

the bPairs-list, which stores all recently

evaluated block pairs. Thereby, a block pair

is represented as a triple of

blockNr1;blockNr2;duplicatesPerCompariso

n hi . We implemented the bPairs-list as a

priority queue, because the algorithm

frequently reads the top elements from this

list. In the

followingLine10,thePBalgorithmsortsthedat

asetusingthe progressive MagpieSort

algorithm. Afterwards, the Lines 11 to 14

load all blocks partition-wise from disk to

execute the comparisonswithineachblock.

After the preprocessing, the PB algorithm

starts progressively extending the most

promising block pairs (Lines 15 to 23). In

each loop, PB first takes those block pairs

bestBPs from the bPairs-list that reported the

highest duplicate density. Thereby, at most

bPerP=4 block pairs can be taken,because

the algorithm needs to load two blocks per

bestBP and each extension of a bestBP

delivers two partition block pairs pBPs in

Line 20. However, if such an extension

exceeds the maximum block range R, the

last bestBP is discarded. Having

successfully defined the most promising

block pairs, Line21loads thecorresponding

blocksfromdisktocompare the pBPs in Line

22. The compare(blocks, pBPs,

order)procedure is listed in Lines 24 to 28.

For all partition block pairs pBP, the

procedure compares each record of the first

block to all records of the second block. The

identified duplicate pairs dPairs are then

emitted in Line 27. Furthermore, Line 28

assigns the duplicate pairs to the current

pBP to later rank the duplicate density of

this block pair with the density in other

block pairs. Thereby, the amount of

duplicates is normalized by the number of

comparisons, because the last block is

usually smaller than all other blocks. In Line

23, the algorithm adds the previously

compared pBPs to the bPairslist to use them

in the next progressive iteration. If the PB

algorithm is not terminated prematurely, it

automatically finishes when the list of bPairs

is empty, e.g., no new block

pairswithinthemaximumblockrangeRcanbef

ound.

4.3 Blocking Techniques Block size.

 A block pair consisting of two small blocks

defines only few comparisons. Using such

small blocks, the PB algorithm carefully

 12

selects the most promising comparisons and

avoids many less promising comparisons

from a wider neighborhood. However, block

pairs based on small blocks cannot

characterize the duplicate density in their

neighborhood well, because they represent a

too small sample. A block pair consisting of

large blocks, in contrast, may define too

many, less promising comparisons, but

produce better samples for the extension

step. The block size parameter S, therefore,

trades off the execution of non-promising

comparisons and the extension quality. In

preliminary experiments, we identified five

records per block to be a generally good and

not sensitive value. Maximum block range.

The maximum block range parameter R is

superfluous when using early termination.

For our evaluation, however, we use this

parameter to restrict the PB algorithm to

approximately the same comparisons

executed by the traditional sorted

neighborhood method. We cannot restrict

PB to execute exactly the same

comparisons, because the selection of

comparison candidates is more fine-grained

by using a window than by using blocks.

Nevertheless, the calculation of R as R

¼bwindowSize S ccauses PB to execute

only minimally fewer comparisons.

Extension strategy. The extend(bestBP)

function in Line 20 of Algorithm 2 returns

some block pairs in the neighborhood of the

given bestBP. In our implementation, the

function extends a block pair ði;jÞ to the

block pairs ðiþ1;jÞ andði;j þ1Þas shown in

Fig. 2. More eager extension strategies that

select more block pairs from the

neighborhood increase the progressiveness,

if many large duplicate clusters are

expected. By using a block size S close to

the average duplicate cluster size, more

eager extension strategies have, however,

not shown a significant impact on PB’s

performance in our experiments. The benefit

of detecting some cluster duplicates earlier

was usually as high as the drawback of

executing fruitless comparisons.

5 ATTRIBUTE CONCURRENCY

 The best sorting or blocking key for a

duplicate detection algorithm is generally

unknown or hard to find. Most duplicate

detection frameworks tackle this key

selection problem by applying the multi-

pass execution method. This method

executes the duplicate detection algorithm

multiple times using different keys in each

pass. However, the execution order among

the different keys is arbitrary. Therefore,

 13

favoring good keys over poorer keys already

increases the progressiveness of the multi-

pass method. In this section, we present two

multi-pass algorithms that dynamically

interleave the different passes based on

intermediate results to execute promising

iterations earlier. The first algorithm is the

attribute concurrent PSNM (AC-PSNM),

which is the progressive implementation of

the multi-pass method for the PSNM

algorithm, and the second algorithm is the

attribute concurrent PB (AC-PB), which is

the corresponding implementation for the

PB algorithm.

5.1 Attribute Concurrent PSNM

 The basic idea of AC-PSNM is to weight

and re-weight all given keys at runtime and

to dynamically switch between the keys

based on intermediate results. Thereto, the

algorithm precalculates the sorting for each

key attribute. The precalculation also

executes the first progressive iteration for

every key to count the number of results.

Afterwards, the algorithm ranks the different

keys by their result counts. The best key is

then selected to process its next iteration.

The number of results of this iteration can

change the ranking of the current key so that

another key might be chosen to execute its

next iteration. In this way, the algorithm

prefers the most promising key in each

iteration. Algorithm 3 depicts our

implementation of AC-PSNM. It takes the

same five parameters as the basic PSNM

algorithm but a set of keys Ks instead of a

single key. First, AC-PSNM calculates the

partition size pSize and the overall number

of partitions pNum. During execution, each

key is assigned an own state. To encode

these states, the algorithm defines three

basic data structures in Lines 4 to 6: an

orders-array, which stores the different

orders, a windowsarray, which stores the

current window range for each key, and a

dCounts-array, which stores the keys’

current duplicate counts. To initialize these

data structures, Line 7 iterates all given

keys. For each key, the algorithm uses

MagpieSort in Line 8 to create the

corresponding order. Simultaneously, it

calculates and counts the duplicates of the

key’s first progressive iteration. In Line 9,

AC-PSNM then stores the number 2 as the

recently used window range for the current

key.

Algorithm 3. Attribute Concurrent PSNM

Require: dataset reference D, sorting keys

Ks, window size W, enlargement interval

 14

size I and record number N 1: procedure

AC-PSNM(D, Ks, W, I, N) 2: pSize

calcPartitionSize(D) 3: pNum N=ðpSize�W

þ1Þ de 4: array orders dimension Ksj j� N

as Integer 5: array windows size Ksjj as

Integer 6: array dCounts size Ksjj as Integer

7: for k 0 to Ksj j� 1 do 8: orders½k�;

dCounts½k� hi sortProgressive(D, I,

Ks½k�, pSize, pNum) 9: windows½k� 2

10: while9w2windows : w < W do 11: k

findBestKey(dCounts, windows) 12:

windows½k� windows½k�þ1 13: dPairs

process(D, I, N, orders½k�, windows½k�,

pSize, pNum) 14: dCounts½k� dPairsjj

After initialization, AC-PSNM enters the

main loop in Line 10. This loop continues

until the maximum window size W has been

reached with all keys. In the loop’s body, the

algorithm first selects the key k that

delivered the most duplicates in the last

iteration by consulting the dCountsarray in

Line 11. To execute the next progressive

iteration for k, the algorithm first increases

the corresponding window range by one.

Then, it calls the process(...) function that

runs the PSNM algorithm with only the

specified rankdistance. Afterwards, Line 14

updates the duplicate count of the current

key with the amount of newly found

duplicates. Due to the update, AC-PSNM

might select another best key in the next

iteration. In this way, the algorithm

dynamically re-ranks the sorting keys. Note

that the process(...) function in Line 13

handles record comparisons slightly

different than MagpieSort in Line 8. Since

the initialization uses the keys in arbitrary

order, MagpieSort counts all duplicates that

are found in the first iterations to treat all

keys equally. Afterwards, the process(...)

function reports only new duplicates that

have not been found before with a different

key. This change in behavior guarantees that

the progressive main loop always chooses

the currently most promising key. Counting

only new duplicates also causes the

algorithm to automatically rank those keys

last, whose orders are subsumed by other

keys’ orders. For instance, “postcode” might

displace “city” as a key in an address

dataset, because it usually generates a

similar but more fine-grained order.

5.2 Attribute Concurrent

PB Instead of scheduling progressive

iterations of different keys, AC-PB directly

schedules the bPair-comparisons of all keys:

AC-PB first calculates the initial block pairs

and their duplicate counts for all keys (see

 15

Fig. 2 in Section 4.1); then, it takes all block

pairs together and ranks them regardless of

the key, with which the individual blocks

have initially been created. This approach

lets AC-PB rank the comparisons even more

precisely than AC-PSNM.

6 CONCLUSION AND FUTURE WORK

This paper introduced the progressive sorted

neighborhood method and progressive

blocking. Both algorithms increase the

efficiency of duplicate detection for

situations with limited execution time; they

dynamically change the ranking of

comparison candidates based on

intermediate results to execute promising

comparisons first and less promising

comparisons later. To determine the

performance gain of our algorithms, we

proposed a novel quality measure for

progressiveness that integrates seamlessly

with existing measures. Using this measure,

experiments showed that our approaches

outperform the traditional SNM by up to

100 percent and related work by up to 30

percent. For the construction of a fully

progressive duplicate detection workflow,

we proposed a progressive sorting method,

Magpie, a progressive multi-pass execution

model, Attribute Concurrency, and an

incremental transitive closure algorithm.

The adaptations AC-PSNM and AC-PB use

multiple sort keys concurrently to interleave

their progressive iterations. By analyzing

intermediate results, both approaches

dynamically rank the different sort keys at

runtime, drastically easing the key selection

problem. In future work, we want to

combine our progressive approaches with

scalable approaches for duplicate detection

to deliver results even faster. In particular,

Kolb et al. introduced a two phase parallel

SNM , which executes a traditional SNM on

balanced, overlapping partitions. Here, we

can instead use our PSNM to progressively

find duplicates in parallel.

REFERENCES

 [1] S. E. Whang, D. Marmaros, and H.

Garcia-Molina, “Pay-as-you-go entity

resolution,” IEEE Trans. Knowl. Data Eng.,

vol. 25, no. 5, pp. 1111–1124, May 2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and

V. S. Verykios, “Duplicate record detection:

A survey,” IEEE Trans. Knowl. Data Eng.,

vol. 19, no. 1, pp. 1–16, Jan. 2007.

[3] F. Naumann and M. Herschel, An

Introduction to Duplicate Detection. San

 16

Rafael, CA, USA: Morgan & Claypool,

2010.

 [4] H. B. Newcombe and J. M. Kennedy,

“Record linkage: Making maximum use of

the discriminating power of identifying

information,” Commun. ACM, vol. 5, no.

11, pp. 563–566, 1962.

 [5] M. A. Hern�andez and S. J. Stolfo,

“Real-world data is dirty: Data cleansing

and the merge/purge problem,” Data Mining

Knowl. Discovery, vol. 2, no. 1, pp. 9–37,

1998.

[6] X. Dong, A. Halevy, and J. Madhavan,

“Reference reconciliation in complex

information spaces,” in Proc. Int. Conf.

Manage. Data, 2005, pp. 85–96.

 [7] O. Hassanzadeh, F. Chiang, H. C. Lee,

and R. J. Miller, “Framework for evaluating

clustering algorithms in duplicate

detection,” Proc. Very Large Databases

Endowment, vol. 2, pp. 1282– 1293, 2009.

 [8] O. Hassanzadeh and R. J. Miller,

“Creating probabilistic databases from

duplicated data,” VLDB J., vol. 18, no. 5,

pp. 1141–1166, 2009.

[9] U. Draisbach, F. Naumann, S. Szott, and

O. Wonneberg, “Adaptive windows for

duplicate detection,” in Proc. IEEE 28th Int.

Conf. Data Eng., 2012, pp. 1073–1083. [10]

S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles,

“Adaptive sorted neighborhood methods for

efficient record linkage,” in Proc. 7th ACM/

IEEE Joint Int. Conf. Digit. Libraries, 2007,

pp. 185–194.

Author’s Details

.P.VIJAYA RAGHAVULU received M.Tech(CSE)

Degree from School of Information Technology,

Autonomous, and Affiliated to JNTUA,

Anathapur. He is currently working as Assistant

Professor in the Department of Computer

Science and Engineering in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP . His interests

includes Object Oriented Programming,

Operating System, Database Management

System, Computer Networking, Cloud

Computing and Software Quality Assurance.

Ms. T.SUMANA SRI She is

currently pursuing M.tech

Degree in Computer Science

and Engineering specialization

in Modugula Kalavathamma Institute of

Technology for Women, Rajampet,

Kadapa,AP .

 17

